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We consider the many-body ground state of polarized fermions interacting via zero-range p-wave
forces in a one-dimensional geometry. We rigorously prove that in the limit of infinite attractions
spectral properties of any-order reduced density matrix describing arbitrary subsystem are completely
independent of the shape of an external potential. It means that quantum correlations between any
two subsystems are in this limit insensitive to the confinement. In addition, we show that the purity
of these matrices quantifying the amount of quantum correlations can be obtained analytically for any
number of particles without diagonalizing them. This observation may serve as a rigorous benchmark
for other models and methods describing strongly interacting p-wave fermions.

Motivation. Over the last two decades, there has been
growing interest in the properties of one-dimensional
systems composed of particles confined in trapping po-
tentials, which are described by generic Hamiltonians of
the form

H =

N∑
i=1

−1

2

∂2

∂x2
i

+ V (xi) +

N∑
j=i+1

U(xi − xj)

 , (1)

where V (x) and U(x) are the trapping and interact-
ing potentials, respectively. In particular, in the light
of experimental progress with ultracold atomic systems,
much effort has been devoted to a better understanding
of properties of systems of bosons and two-component
fermionic mixtures interacting via s-wave zero-range in-
teractions, U(x) = gδ(x) (for general reviews see [1–
5]). In contrast, despite the growing experimental activ-
ity [6–11], relatively little theoretical attention has been
paid to one-component systems of polarized fermions in-
teracting via zero-range p-wave forces [12–18]. In one-
dimensional geometry, they are represented by the fol-
lowing differential operator

U(x) = −gF
2

←−
∂

∂x
δ(x)

−→
∂

∂x
, (2)

where gF is the effective p-wave interaction strength.
One of the fundamental results on p-wave fermions in
one dimension, following observation by Girardeau [19],
was given in [20]. It was rigorously proven that, in-
dependently of the trapping potential, for any gF the
many-body ground-state Ψ(x1, . . . , xN ) of the Hamilto-
nian (1) can be derived directly from the many-body
ground-state ΨB(x1, . . . , xN ) of one-component s-wave
bosonic system obtained for interaction strength g =
−2/gF via anti-symmetrization transformation of the
form Ψ(x1, .., xN ) = A(x1, .., xN )ΨB(x1, .., xN ), where
A(x1, .., xN ) = Πi<jsgn(xi − xj). This mapping turned
out to be exceptionally useful for systems confined in a
homogenous box potential where Bethe ansatz can be

exploited [18, 21]. Although, in principle, the trans-
formation gives a route to determine the ground-state
wave function of p-wave fermions from the correspond-
ing bosonic system, due to its non-trivial structure there
is no direct mapping of different properties between
these systems. Particularly, mutual correlations encoded
in reduced density matrices cannot be deduced from cor-
relations in bosonic counterparts.

The mapping is particularly convenient in limiting in-
teraction strengths. For example, the wave function of
bosonic gas in the Tonks-Girardeu limit (g → +∞) can
be easily obtained from the many-body wave function
of non-interacting fermions expressed as symmetrized
Slater determinant of N single-particle orbitals deter-
mined by potential V (x). This observation triggered
a progress in better understanding of strongly repul-
sive bosonic systems. On the opposite, the ground-state
of infinitely strongly attracting p-wave fermions (gF →
−∞) is mapped from the non-interacting ground-state of
bosonic system, i.e., it depends only on one function ϕ(x)
being the lowest eigenstate of a single-particle Hamil-
tonian. In this limit the many-body ground-state wave
function of p-wave fermions has a form

Ψ(x1, .., xN ) =

N∏
i=1

ϕ(xi)

N∏
j=i+1

sgn(xi − xj)

 . (3)

It suggests that knowledge of the ground-state func-
tion ϕ(x) is necessary to determine any properties of
p-wave fermions in the limit of strong attraction gF →
−∞. Thus, to get quantitative predictions, typically
one assumes that external potential is uniform [22] or
parabolic [23, 24]. We show in the following that this
kind of assumption is not needed if any internal correla-
tions between subsystems are considered.

Internal correlations. The most general object en-
coding internal correlations in any many-body system of
indistinguishable particles is the whole set of p-particle
reduced density matrices (p-RDM) [25–27]. They are ob-
tained by considering the subsystem of p particles and by
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integrating out remaining part from the density matrix

ρ(p)(xp,x
′
p) =

∫
dqpΨ

∗(xp, qp)Ψ(x′
p, qp), (4)

where xp = (x1, . . . , xp) and qp = (xp+1, . . . , xN ). Utiliz-
ing the known form of the many-body ground state wave
function (3) it is straightforward to show that p-RDM can
be written as

ρ(p)(xp,x
′
p) = P(xp,x

′
p)

N−p

×
p∏

i=1

ϕ(xi)ϕ(x
′
i)

p∏
j=i+1

sgn(xi − xj)sgn(x
′
i − x′

j), (5)

where

P(xp,x
′
p) =

∫
dz ϕ2(z)

p∏
i=1

sgn(xi − z)sgn(x′
i − z). (6)

From the physical perspective, it is extremely useful to
represent any p-RDM in a diagonal form as

ρ(p)(xp,x
′
p) =

∑
k

λ
(p)
k uk(xp)u

∗
k(x

′
p), (7)

where eigenvalues λ
(p)
k and eigenorbitals uk(xp) fulfill

the integral eigenequation∫
dx′

p ρ
(p)(xp,x

′
p)uk(x

′
p) = λ

(p)
k uk(xp). (8)

Eigenvalues λ
(p)
k directly determine quantum entangle-

ment between parties after dividing the system into p
and N −p particles. They are also used to identify differ-
ent structures of the many-body states, such as p-order
coherence and fragmentation [28, 29] or off-diagonal
long-range order to indicate the collective formation of
pairs (p = 2) [30] or triples (p = 3) [31, 32]. It is
also clear that if the eigenvalues are known for any p,
complete knowledge of internal correlations in the sys-
tem can be extracted. There are a plethora of different
quantities describing correlations. In the following, we
use one of the simplest – the participation number de-
fined as K(p) = 1/Tr

[
(ρ(p))2

]
[33]. This number, being

the inverse of the quantum purity P(p) = Tr
[
(ρ(p))2

]
=∑

k

(
λ
(p)
k

)2

, can be viewed as an effective number of
eigenorbitals decomposing the reduced density matrix
ρ(p). It is worth mentioning that, although these quanti-
ties are introduced purely on theoretical grounds, there
are experimental paths to capture them [34, 35].

Universality of p-wave fermions. It is clear that the
ground function ϕ(x) enters to the expression of any p-
RDM in a very non-trivial way. Therefore one suspects
that their spectral properties are strongly related to the

external potential V (x). This reasoning is also very in-
tuitive since in other one-dimensional systems we ob-
serve a strong influence of external confinement on in-
ternal entanglement. Particularly, it is true for the Tonks-
Girardeu gas of infinitely repulsively interacting bosons.
In contrast to this intuitive picture in the following we
rigorously show that eigenvalues λ

(p)
k are completely in-

dependent of the confinement for arbitrary p, while cor-
responding eigenorbitals uk(xp) obtained for different
confinements are related via a straightforward, analyti-
cal transformation.

To present reasoning as clearly as possible, let us first
show the universality of the decomposition for the 1-
RDM. In this case, expression (5) simplifies to the known
form [22]

ρ(1)(x, x′) = ϕ(x)ϕ(x′)

×
(∫

dz ϕ2(z) sgn(x− z)sgn(x′ − z)

)N−1

. (9)

Now, let us consider the cumulative distribution function
F (x) built from the single-particle distribution ϕ2(x) de-
fined as

F (x) =

∫ x

−∞
dz ϕ2(z). (10)

By performing a simple change of variables ξ = F (z)
(dξ = ϕ2(z)dz), y = F (x), and y′ = F (x′) and making a
transformation uk(x) = ϕ(x)vk(F (x)) one finds that the
original eigenproblem∫

dx′ ρ(1)(x, x′)uk(x
′) = λ

(1)
k uk(x) (11)

is uniquely transformed to another ϕ-independent eigen-
problem ∫ 1

0

dy′ ρ
(1)
0 (y, y′)vk(y

′) = λ
(1)
k vk(y), (12)

where

ρ
(1)
0 (y, y′) =[∫ 1

0

dξ sgn
(
F−1(y)−F−1(ξ)

)
sgn

(
F−1(y′)−F−1(ξ)

)]N−1

.

Now, we can utilize the fact that the distribution (10)
and its inverse are growing functions of their arguments
(sgn(F−1(a) − F−1(b)) = sgn(a − b)). This simplifies
expression further to manifestly ϕ-independent form

ρ
(1)
0 (y, y′) =

(∫ 1

0

dξ sgn(y − ξ) sgn(y′ − ξ)

)N−1

= (1− 2 |y − y′|)N−1
. (13)
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It is quite easy to show that the proposed transformation
preserves the inner product between orbitals,∫

dxuk(x)uk′(x)

=

∫
dx vk(F (x))vk′(F (x))ϕ2(x) =∫ 1

0

dy vk(y)vk′(y). (14)

Importantly, the original density matrix ρ(1)(x, x′) has ex-
actly the same eigenvalues λ

(1)
k as the transformed den-

sity matrix ρ
(1)
0 (y, y′). All that means that the task of

solving the original eigenproblem (11) can be always
reduced to the simpler task of solving the universal ϕ-
independent eigenproblem (12). Consequently, the spec-
tral properties of the 1-RDM (9) do not depend on the
ground function ϕ(x), ergo they do not depend on the
shape of the external potential V (x).

Essentially, the proof for higher p-RDMs is very anal-
ogous. The transformation of variables from xp to yp

should be performed on all vector elements simultane-
ously, i.e., yp = F (xp) and y′

p = F (x′
p). After that

(utilizing again monotonicity of the cumulative distribu-
tion) the original eigenproblem (8) is transformed into
the form∫ 1

0

dy′
p ρ

(p)
0 (yp,y

′
p)vk(y

′
p) = λ

(p)
k vk(yp). (15)

with the transformed p-RDM being independent on the
ground function ϕ(x)

ρ
(p)
0 (yp,y

′
p) = P0(yp,y

′
p)

N−p

×
p∏

i=1

p∏
j=i+1

sgn(yi − yj)sgn(y
′
i − y′j), (16)

where

P0(yp,y
′
p) =

∫ 1

0

dξ

p∏
i=1

sgn(yi − ξ)sgn(y′i − ξ).

The transformation between eigenorbitals is also anal-
ogous, uk(xp) = [Πp

i=1ϕ(xi)] vk(F (xp)). The rigorous
argumentation presented above shows that eigenvalues
of any p-RDM calculated for strongly attractive p-wave
fermions have universal values and are completely inde-
pendent of the shape of an external potential.

Minimalistic example. The proven universality has
not only fundamental meaning but brings also practi-
cal consequences since it provides the universal upper
bounds on multi-component correlations forced by inter-
actions in any one-dimensional p-wave fermionic system.
To illustrate that let us consider the simplest system of
N = 2 fermions confined in two, very different poten-
tials, i.e., pure parabolic trap, V (x) = x2/2, and a deep

FIG. 1. Spectral properties of 1-RDM for the system of N = 2
p-wave fermions confined in a parabolic trap (red) and double-
well potential (green). (a) The two largest eigenvalues (dou-
bly degenerated) as functions of interactions. For finite in-
teractions, spectral decomposition depends on the shape of
external trapping. However, in the limit of infinite attrac-
tions, all eigenvalues saturate on corresponding universal val-
ues (dashed lines, here 4/π2 and 4/9π2). (b) Participation
number K(1) as a function of interaction. Depending on exter-
nal potential, the number grows monotonically with different
slopes. However, independently of confinement, it always sat-
urates at the universal value (dashed line at K(1)

∞ = 3). (c) 1-
RDM in the position domain ρ(1)(x, x′) obtained in the limit of
infinite attractions gF → −∞ for two different confinements.
Although these two density matrices are substantially differ-
ent, due to the universality proven, they have exactly the same
eigenvalues.

double-well trap, V (x) = x2/2 + 4e−x2/2. In these cases,
the ground-state wave function can be easily obtained
numerically for any interaction strength gF (via mapping
from two-boson solutions). Simultaneously, all correla-
tions between particles are encoded in corresponding 1-
RDM which can be quite easily diagonalized numerically
on a dense grid for any interaction strength gF [24].

Of course, in the non-interacting case, the ground state
wave function is provided by a single Slater determinant
of the two lowest single-particle orbitals. Thus, the 1-
RDM has only one non-zero doubly degenerated eigen-
value equal to 1/2 (Fig. 1a). Then, along with increas-
ing attractive interactions, other single particle orbitals
start to contribute to the ground state, their eigenval-
ues become non-zero, the participation number grows
monotonically (Fig. 1b), and the state becomes entan-
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gled [36, 37]. It is clear that for a given interaction
strength the number K(1) depends also on the shape of
an external potential (red and green curves for parabolic
and double-well potentials, respectively). In the limit of
infinite attractions (gF → −∞), however, correspond-
ing eigenvalues of 1-RDM become exactly the same and
the participation K(1) saturates on the universal value.
Concurrently, corresponding 1-RDMs are completely dif-
ferent and have significantly distinct spatial shapes (see
Fig. 1c). It turns out that in this case, all the spectral
properties of the 1-RDM can be found analytically, i.e.,
one can find exact solutions of the eigenproblem (12).
All the eigenvalues of ρ(1)0 (y, y′) are doubly degenerated
and equal to λ

(1)
k = [2/π(2k − 1)]2, while corresponding

eigenorbitals have a form v
(+)
k (y) =

√
2 sin[(2k − 1)πy]

and v
(−)
k (y) =

√
2 cos[(2k−1)πy]. It means that the dom-

inant eigenvalue λ
(1)
1 and the participation K(1) saturate

at 4/π2 and 3, respectively (horizontal dashed lines in
Fig. 1a and Fig. 1b). They agree with previous results
obtained for box potential [18]. Let us mention here
that in the case of two bosons confined in these poten-
tials, 1-RDM is no longer universal. In the limit of in-
finitely strong repulsions, the two largest eigenvalues are
(0.7735, 0.1712) and (0.5847, 0.4127) (participations
1.583 and 1.952) for the harmonic and the double-well
potential, respectively.

High-order correlations. The proven spectral univer-
sality of reduced density matrices maybe also utilized
when higher-order correlations (encoded in higher p-
RDMs) are considered. For some purposes, it does not
even require solving the universal eigenproblem (15).
For example, thanks to (16), one can straightforwardly
show that the purity P(p) may be expressed as a pure
polynomial multiple integral of the form

P(p) =

∫ 1

0

dyp

∫ 1

0

dy′
p P0(yp,y

′
p)

2(N−p)

= (2p)!

∫ 1

0

dy1

∫ 1

y1

dy′1

∫ 1

y′
1

dy2

∫ 1

y2

dy′2 . . .

. . .

∫ 1

y′
p−1

dyp

∫ 1

yp

dy′p

[
1 + 2

p∑
i=1

(yi − y
′

i)

]2(N−p)

. (17)

In principle, it means that in the limit of infinite attrac-
tions, the purity can be calculated analytically for any N
and p (of course independently of the shape of an exter-
nal potential). In practice, calculating this kind of inte-
grals is arduous and can be performed only with sym-
bolic calculus software. As an instructive example, in
Fig. 2 we show the participation K

(p)
∞ calculated analyt-

ically in this limit for p = 1, . . . , 4 (different colors) and
p = N/2 (solid black line) as functions of the number of
particles N . The latter gives the upper limit for all lower-
p participations. In this way we determine rigorously,
the amount of correlation that can be obtained in sys-
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FIG. 2. Universal participation number K(p)
∞ calculated for four

the lowest p-RDMs and different numbers of particles N (dif-
ferent colors). The solid black line corresponds to the partic-
ipation obtained for the bipartition of the system (p = N/2).
For convenience, in all the cases, we display the difference be-
tween K

(p)
∞ and its value for a non-interacting system, K(p)

0 =
N !/p!(N − p)!.

tems of strongly interacting p-wave fermions regardless
of the shape of the trapping potential. It is evident that
the number of eigenorbitals contributing significantly in
the decomposition (7) grows rapidly with N and p sig-
naling a quick boost of quantum correlations. We find
that depending on p, the participation changes from lin-
ear (K(1)

∞ = 2N − 1) to exponential-like (numerical fit
provides approximate dependence K

(N/2)
∞ ∼ 2N ).

Final remarks. In principle, the identified universality
holds for any number of particles. However, since the
gap to excited many-body states decreases with growing
N , for sufficiently large particle numbers experimental
observation of the universality may be challenging. This
obviously depends also on the shape of confinement.

Universal features of quantum correlations are direct
consequences of the form of the ground state (3). There-
fore, the reasoning can be easily applied to any state
having such a representation, using an appropriate cu-
mulative distribution. Unfortunately, excited states of
the system under study do not necessarily have such a
representation. Therefore, the question of whether their
correlations manifest any universality remains open and
requires further investigation.

Finally, let us also mention that our results suggest that
the universality can be used as a tool to indicate states
that cannot be achieved as a many-body ground state.
For example, as noticed previously in a two-particle sys-
tem, the participation K(1) never exceeds universal value
K

(1)
∞ = 3. If this is true, one can immediately argue that

states with larger K(1), potentially interesting from the
quantum information point of view, are not achievable
as the ground state of N = 2 p-wave fermions indepen-
dently on interaction strength and shape of the confine-
ment. One of such states is the entangled Slater-rank-
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two state [36–38] build as an equal superposition of two
distinct Slater determinants (the participation K(1) for
this state is equal 4). Since the universal behavior is for-
mulated for any p-RDM, similar reasoning can be also
applied for higher-order correlations when a larger num-
ber of particles is considered. In fact, for a given num-
ber of particles N , considering all possible upper bounds
derived for different p significantly reduces the space of
many-body states attainable in the interacting ground
state of p-wave fermions. From this point of view, deeper
studying of all limitations forced by recognized univer-
sality may bring a better understanding of different p-
wave fermions systems also for finite interactions.
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